

Institut Supérieure des Études Téchnologiques de Rades Département SEG

STATISTIQUES INFÉRENTIELLES EXAMEN FINAL DU 2^{nd} SEMESTRE

CHAOUACHI M. ABASSI Y.

Classes L1: CF 12 Juin 2023 Nombre de pages: 2+3Tables Durée: 1 h 30 mn

La calculatrice est autorisée et tout autre type de matériels éléctroniques tels les portables, les tablettes ainsi que les montres intélligentes sont strictement interdits.

Toute présence du matriels interdits est considérée comme tentative de fraude et expose le condidat aux sanctions du règlement intérieur des établissements du ministère de l'enseignement supérieur.

NB: L'examen est annexé par des tables statistiques, seuls ces tables sont autorisées et nul autre table n'est pérmise.

Exercice 1. (4 points)

À fin de satisfaire une commande d'un client, l'équipe statistique d'une boite de consulting cherche n la taille minimale de l'échantillon aléatoire

- (a) d'une proportion de la population au niveau de confiance de 99% avec une erreur E=0,1.

 (2 points)
- (b) d'une moyenne pour une population normalement distribuée avec un écart type $\sigma = 1,26$ au niveau de confiance de 99% avec une erreur E = 0,8. (2 points)

TAF: Calculez n pour les deux cas précédents.

Exercice 2. (4 points)

Les données suivantes on trait au prix moyen d'un kilogramme de poisson dans différents marchés tunisiens (en DT):

12,4	15, 5	13,8	11,9	13, 6
14,8	18, 3	15, 6	13, 7	12,8

En supposant que la variable X, qui indique le prix d'un kilogramme de poisson dans les marchés tunisiens, est une variable normale et que l'échantillon est aléatoire, testez l'hypothèe selon laquelle le prix moyen d'un kilogramme de poisson est inférieur à 13 DT pour un seuil de signification $\alpha = 0,01$.

Exercice 3. (6 points)

Pour mesurer la teneur moyenne en caféine d'une marque d'un café soluble, exprimée en miligrammes par dix mililitres (mgr/10mL), on a prélevé un échantillon aléatoire de 8 tasses de 10mL qui ont données les résultats suivants:

- 1. Donnez une estimation ponctuelle de la teneur moyenne en caféine du café soluble de cette marque. (2 points)
- 2. En supposant que la teneur en caféine d'un café est normallement distribuée, donnez un intervalle de confiance de niveau 99% de la moyenne de cette teneur. (2 points)
- 3. En supposant que la teneur en caféine d'un café est normallement distribuée avec un écart type $\sigma=3$, donnez un intervalle de confiance de niveau 99% de la moyenne de cette teneur. (2 points)

Exercice 4. (6 points)

Une entreprise de e-commerce veut savoir si l'achat en ligne dépend de la durée de visite de son site web. Pour ce faire, le responsable marketing digital de cette entreprise a receuilli un échantillon aléatoire de 400 visiteurs de son site web qui ont généré le tableau des fréquences obsérvées suivant:

	a acheté en ligne	n'a pas achteé en ligne	Total
inférieure à 2 mn	140	60	
entre 2 et 5 mn	90	30	
supérieure à 5 mn	60	20	
Total			

1. Complétez le tableau par les tautaux et dressez un autre tableau pour les fréquences théoriques.
(2 points)

2. Calculez χ^2_{obs} (χ^2 calculée).

(2 points)

3. Peut-on affirmer au seuil de signification $\alpha = 5\%$ que la durée de visite du site web influence les ventes en ligne pour cette entreprise. (2 points)

Les Tables statistiques:

Table de la loi Normale

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986

On utilise cette table de la façon suivante: pour $\alpha=0,01$ alors $z_{1-\alpha/2}=1,96$ ce qui implique que:

$$\Phi_Z(z_{1-\alpha/2}=1,96)=1-\frac{\alpha}{2}=1-0,005=0,9750$$

.

Table de la loi de Student

ν^{α}	0,900	0,500	0,300	0,200	0,100	0,050	0,020	0,010	0,001
1	0,1584	1,0000	1,9626	3,0777	6,3138	12,7062	31,8205	63,6567	636,6193
2	0,1421	0,8165	1,3862	1,8856	2,9200	4,3027	6,9646	9,9248	31,5991
3	0,1366	0,7649	1,2498	1,6377	2,3534	3,1824	4,5407	5,8409	12,9240
4	0,1338	0,7407	1,1896	1,5332	2,1318	2,7764	3,7469	4,6041	8,6103
5	0,1322	0,7267	1,1558	1,4759	2,0150	2,5706	3,3649	4,0321	6,8688
6	0,1311	0,7176	1,1342	1,4398	1,9432	2,4469	3,1427	3,7074	5,9588
7	0,1303	0,7111	1,1192	1,4149	1,8946	2,3646	2,9980	3,4995	5,4079
8	0,1297	0,7064	1,1081	1,3968	1,8595	2,3060	$2,\!8965$	3,3554	5,0413
9	0,1293	0,7027	1,0997	1,3830	1,8331	2,2622	2,8214	3,2498	4,7809
10	0,1289	0,6998	1,0931	1,3722	1,8125	2,2281	2,7638	3,1693	4,5869
11	0,1286	0,6974	1,0877	1,3634	1,7959	2,2010	2,7181	3,1058	4,4370
12	0,1283	0,6955	1,0832	1,3562	1,7823	$2,\!1788$	2,6810	3,0545	4,3178
13	0,1281	0,6938	1,0795	1,3502	1,7709	2,1604	2,6503	3,0123	4,2208
14	0,1280	0,6924	1,0763	1,3450	1,7613	2,1448	2,6245	2,9768	4,1405
15	0,1278	0,6912	1,0735	1,3406	1,7531	2,1314	2,6025	2,9467	4,0728
16	0,1277	0,6901	1,0711	1,3368	1,7459	2,1199	2,5835	2,9208	4,0150
17	0,1276	0,6892	1,0690	1,3334	1,7396	2,1098	2,5669	2,8982	3,9651
18	0,1274	0,6884	1,0672	1,3304	1,7341	2,1009	2,5524	2,8784	3,9216
19	0,1274	0,6876	1,0655	1,3277	1,7291	2,0930	2,5395	2,8609	3,8834
20	0,1273	0,6870	1,0640	1,3253	1,7247	2,0860	2,5280	2,8453	3,8495
21	0,1272	0,6864	1,0627	1,3232	1,7207	2,0796	2,5176	2,8314	3,8193
22	0,1271	0,6858	1,0614	1,3212	1,7171	2,0739	2,5083	2,8188	3,7921
23	0,1271	0,6853	1,0603	1,3195	1,7139	2,0687	2,4999	2,8073	3,7676
24	0,1270	0,6848	1,0593	1,3178	1,7109	2,0639	2,4922	2,7969	3,7454
25	0,1269	0,6844	1,0584	1,3163	1,7081	2,0595	2,4851	2,7874	3,7251
26	0,1269	0,6840	1,0575	1,3150	1,7056	2,0555	2,4786	2,7787	3,7066
27	0,1268	0,6837	1,0567	1,3137	1,7033	2,0518	2,4727	2,7707	3,6896
28	0,1268	0,6834	1,0560	1,3125	1,7011	2,0484	2,4671	2,7633	3,6739
29	0,1268	0,6830	1,0553	1,3114	1,6991	2,0452	2,4620	2,7564	3,6594
30	0,1267	0,6828	1,0547	1,3104	1,6973	2,0423	2,4573	2,7500	3,6460
40	0,1265	0,6807	1,0500	1,3031	1,6839	2,0211	2,4233	2,7045	3,5510
60	0,1262	0,6786	1,0455	1,2958	1,6706	2,0003	2,3901	2,6603	3,4602
80	0,1261	0,6776	1,0432	1,2922	1,6641	1,9901	2,3739	2,6387	3,4163
120	0,1259	0,6765	1,0409	1,2886	1,6577	1,9799	2,3578	2,6174	3,3735

On utilise cette table de la façon suivante: pour $\alpha=0,01$ et $\nu=7$ alors $t_{\nu,1-\frac{\alpha}{2}}=3,4995$ ce qui implique que:

$$\Phi_{|T|}(t_{\nu,1-\frac{\alpha}{2}}=3,4995)=1-\alpha=0,990$$

Page 4

Table de la loi du χ^2

ν^{α}	0,990	0,975	0,950	0,900	0,100	0,050	0,025	0,010	0,001
1	0,0002	0,0010	0,0039	0,0158	2,7055	3,8415	5,0239	6,6349	10,8276
2	0,0201	0,0506	$0,\!1026$	0,2107	4,6052	5,9915	7,3778	9,2103	13,8155
3	0,1148	0,2158	$0,\!3518$	0,5844	6,2514	7,8147	9,3484	11,3449	16,2662
4	0,2971	0,4844	0,7107	1,0636	7,7794	9,4877	11,1433	13,2767	18,4668
5	0,5543	0,8312	1,1455	1,6103	9,2364	11,0705	$12,\!8325$	15,0863	$20,\!5150$
6	0,8721	1,2373	1,6354	2,2041	10,6446	12,5916	14,4494	16,8119	22,4577
7	1,2390	1,6899	2,1673	2,8331	12,0170	14,0671	16,0128	18,4753	24,3219
8	1,6465	2,1797	2,7326	$3,\!4895$	13,3616	15,5073	17,5345	20,0902	26,1245
9	2,0879	2,7004	3,3251	4,1682	14,6837	16,9190	19,0228	21,6660	27,8772
10	$2,\!5582$	3,2470	3,9403	4,8652	15,9872	18,3070	20,4832	23,2093	29,5883
11	3,0535	3,8157	4,5748	5,5778	17,2750	19,6751	21,9200	24,7250	31,2641
12	3,5706	4,4038	5,2260	6,3038	18,5493	21,0261	$23,\!3367$	26,2170	32,9095
13	4,1069	5,0088	5,8919	7,0415	19,8119	22,3620	24,7356	27,6883	34,5282
14	4,6604	5,6287	6,5706	7,7895	21,0641	23,6848	26,1189	29,1412	36,1233
15	5,2293	6,2621	7,2609	$8,\!5468$	22,3071	24,9958	27,4884	30,5779	37,6973
16	5,8122	6,9077	7,9616	9,3122	23,5418	26,2962	28,8454	31,9999	39,2524
17	6,4078	$7,\!5642$	8,6718	10,0852	24,7690	27,5871	30,1910	33,4087	40,7902
18	7,0149	8,2307	9,3905	10,8649	25,9894	28,8693	$31,\!5264$	34,8053	42,3124
19	7,6327	8,9065	10,1170	11,6509	27,2036	30,1435	32,8523	36,1909	43,8202
20	8,2604	9,5908	10,8508	$12,\!4426$	28,4120	31,4104	34,1696	37,5662	45,3147
21	8,8972	10,2829	11,5913	13,2396	29,6151	32,6706	35,4789	38,9322	46,7970
22	9,5425	10,9823	12,3380	14,0415	30,8133	33,9244	36,7807	40,2894	48,2679
23	10,1957	11,6886	13,0905	14,8480	32,0069	35,1725	38,0756	41,6384	49,7282
24	10,8564	12,4012	13,8484	15,6587	33,1962	36,4150	39,3641	42,9798	51,1786
25	$11,\!5240$	13,1197	14,6114	16,4734	34,3816	37,6525	40,6465	44,3141	52,6197
26	12,1981	13,8439	$15,\!3792$	17,2919	$35,\!5632$	38,8851	41,9232	45,6417	54,0520
27	12,8785	14,5734	$16,\!1514$	18,1139	36,7412	40,1133	43,1945	46,9629	55,4760
28	$13,\!5647$	15,3079	16,9279	18,9392	37,9159	41,3371	44,4608	48,2782	56,8923
29	14,2565	16,0471	17,7084	19,7677	39,0875	42,5570	45,7223	49,5879	58,3012
30	14,9535	16,7908	18,4927	20,5992	40,2560	43,7730	46,9792	50,8922	59,7031

On utilise cette table de la façon suivante: pour $\alpha=0,01$ et $\nu=5$ on a: $\chi^2_{\nu;1-\alpha}=0,5543$ ce qui implique que:

$$\Phi_X(\chi^2_{5;1-0,01=0,99} = 0,5543) = 1 - \alpha = 0,990$$